Background/Objectives: Chronological age (CA) is commonly used in clinical decisionmaking, yet it may not accurately reflect biological aging. Recent advances in artificial intelligence (AI) allow estimation of electrocardiogram (ECG)-derived heart age, which may serve as a non-invasive biomarker for physiological aging. This study aimed to develop and validate a deep learning model to predict ECG-heart age in individuals with no structural heart disease. Methods: We trained a convolutional neural network (DenseNet-121) using 12-lead ECGs from 292,484 individuals (mean age: 51.4 ± 13.8 years; 42.3% male) without significant cardiac disease. Exclusion criteria included missing age data, age <18 or >90 years, and structural abnormalities. CA was used as the target variable. Model performance was evaluated using the coefficient of determination (R2), Pearson correlation coefficient (PCC), mean absolute error (MAE), and root mean square error (RMSE). External validation was conducted using 1191 independent ECGs. Results: The model demonstrated strong predictive performance (R2 = 0.783, PCC = 0.885, MAE = 5.023 years, RMSE = 6.389 years). ECG-heart age tended to be overestimated in younger adults (≤30 years) and underestimated in older adults (≥70 years). External validation showed consistent performance (R2 = 0.703, PCC = 0.846, MAE = 5.582 years, RMSE = 7.316 years). Conclusions: The proposed AI-based model accurately estimates ECG-heart age in individuals with structurally normal hearts. ECG-derived heart age may serve as a reliable biomarker of biological aging and support future risk stratification strategies.
Loading....